PRANAV BAHL

pbahl@umich.edu | pranavsciml.github.io | linkedin.com/pranavbahldce | Ann Arbor MI, US CFD | Data Science | Numerical methods | Bayesian Inference | Deep learning | Scientific Machine Leaning

OBJECTIVE

Research-focused student with experience in Physics-aware Machine Learning, Deep Learning, CFD, and Scientific Computing. Skilled in data-driven decision making and applied scientific research. Seeking PhD opportunities starting January 2026.

EDUCATION

University of Michigan, Ann Arbor Rackham Graduate Fellowship Michigan, United States

Master of Science in Aerospace Engineering (Concentration: Computational and Data Sciences)

Aug 2024 - Dec 2025

Imperial College London Overall Distinction

London, United Kingdom Oct 2022 - Oct 2023

Master of Science in Advanced Computational Methods (Concentration: Machine Learning)

- Benchmarking of Quantum gated Recurrent Neural Networks parameterized via Variational Quantum Algorithms (VQAs).
- Robust hyper-parameter optimization of the Gated recurrent neural networks via bayesian optimization.

Delhi Technological University Overall Distinction

Bachelor of Technology in Mechanical Engineering (Concentration: Machine Learning)

Delhi, India

Aug 2017 - Aug 2021

(Relevant)** EXPERIENCE

Graduate Research Assistant University of Michigan, Ann Arbor, MI, US

Aug 2024 - Present

- Parallelization (Data Parallel) of Conditional latent diffusion models (Denoising Diffusion Probabilistic Models) in PyTorch achieving 75% reduction in parameter count via training on tensor network latent space.
- Training and implementation of Reinforcement learning (RL) in OpenAI Gym to generate sequential frames of Atari games.
- Conducting Star-CCM+ CFD simulations of Nuclear reactors (RPVs) for benchmarking of AI/ML models.

Computational Software Internship Schlumberger (SIS) - SLB, Abingdon, Oxfordshire, England April 2024 - Aug 2024

- Parallelization (multiprocessing) of Particle swarm optimization algorithm (PSO) and bayesian inference algorithms (EnKFs, EnSRKFs) via python multi-processing achieving **64x reduction in computational time** for reservoir simulations.
- Conceptualized & implemented a novel PSO + K-means clustering algorithm achieving multi-minima objective optimization.

CFD Research Internship Carnegie Mellon University, Pittsburgh, PA, US

Mar 2021 - Oct 2021

- Benchmarking of 3D U-Net neural network based reduced order model (ROM) for spatio-temporal learning of dynamics achieving MSE loss of the order of 10⁻⁴. (Turbulent flows, Vortex Shedding and Sea Surface Temp. Dataset)
- Demonstration of transfer learning across networks with upto ~ 9 seconds training speedup.
- Validation of numerical simulations (CFD) with literature and achieving the agreement within 5% error bounds.

Summer Fellowship (SFRP-2020) Indian Institute of Technology, IIT Delhi, India

Jun 2020 - Aug 2020

- Implementation and conceptualization of a neural network based state estimation architecture achieving a 50-70% reduction in sparse measurement at high noise noise levels compared to conventional shallow ML techniques.
- Implementation of a python script to post-process time series datasets extracted from netCDF meteorological databases.
- Validation of 2D CFD simulations with literature and achieving the agreement within 10% error bounds.

CFD Software Internship Forbes Marshall, IIT Madras Research Park, Chennai, India

May 2019 - Jul 2019

• Modeling, simulation and verification of model spray formation from a single-hole fuel injector via OpenFOAM (C++).

PUBLICATIONS (MACHINE LEARNING)

- Pant, Pranshu, Ruchit Doshi, **Pranav Bahl**, and Amir Barati Farimani. "Deep learning for reduced order modelling and efficient temporal evolution of fluid simulations." **Physics of Fluids** 33, no. 10 (2021): 107101.
- Kumar, Yash, **Pranav Bahl**, and Souvik Chakraborty. "State estimation with limited sensors—A deep learning based approach." **Journal of Computational Physics** 457 (2022): 111081.

SKILLS

 $\textbf{Languages} \hspace{1.5cm} : \hspace{.1cm} \textbf{Python, C and C++, OpenGL, LaTeX, SQL, Julia, OpenFOAM (C++), Fortran} \\$

Machine Learning & Deep Learning: Scikit-learn, Pandas, Numpy, Pytorch, SciPy, TensorFlow, CUDA, Azure ML

Numerical Simulations : Star-CCM+, ANSYS Fluent, OpenFOAM, Nektar++ (C++)

Other Tools : Excel, PowerPoint, PowerBI, Cloud Environments (AWS, GCP), wandb, Streamlit